In-situ observations on physical-biological variables – IMR field activities

Svein Sundby

Bekkjarvik Gjestgiveri 17-19 August 2015

From the scale phytoplankton – to zooplankton - to fish eggs and larvae

From micro- to meso-cosmic scales:

Trophic level	Concentration	Separation distance
Larval fish:	$\sim 1 - 10 \text{ m}^{-3}$	~ 1 m
Copepods:	$\sim 10^3 - 10^4 \text{ m}^{-3}$	$\sim 1 \text{ dm}$
Phytoplankton:	$\sim 10^9$ - 10^{10} m ⁻³	~ 1 mm
Virus:	$\sim 10^{13} \text{ m}^{-3}$	> 0,1 mm

Cod egg

Embryo developing

Density gradient column for measurements of specific gravity

.

The calibrated glass floats

- The sertificate of density of the floats refers to 23°C.
- The accuracy of density is $+-0,0002 \text{ g/cm}^3$.
- The density correction per 1 °C is 0,000028 g/cm³.

Max. egg conc. $\sim 10^4\,m^{\text{-2}}$ - $10^2\,m^{\text{-3}}$

Lofoten –NE and downwelling

HYDROGRAPHY AND PLANKTON SAMPLING

- CTD (SeaBird)
- CTD bottles (Rosette)
- ADCP
- Fluorescense (Chl-a)
- Video plankton recorder
- Messor
- Plankton nets
 - VP2
 - Multinet (Hydrobios)
 - MOCNESS
 - Plankton pumps
- Acoustics

Video plankton recorder Vestfjorden April 2015

Falk-Petersen et al. (2015)

Hydrobios Multinet (0.25 m², 5 nets opening/closing)

Structure in fish eggs

~15 - 35

Sundby and Kristiansen (submitted)

Structure in fish eggs

Specific gravity in the fish egg, ρ_e , is determined by the specific gravities, ρ_x , and fractional volumes, V_x/V_e , of chorion, perivitelline space, and embryo +yolk:

$$\rho_{e} = [(\rho_{ch} \cdot V_{ch} + \rho_{per} \cdot V_{per} + (\rho_{lip} \cdot V_{lip} + \rho_{sw} \cdot V_{per} + \rho_{pro} \cdot V_{pro})] / V_{e}$$

Sundby and Kristiansen (submitted)

Ambient salinity $\sim 30-35$

Basic principle - balance between vertical diffusivity and egg buoyancy:

Sundby (1991)

Kveiteegg i Ballangen: $N^2 = 0.5 \times 10^{-4} - 2.0 \times 10^{-4} (s^{-2})$ $K_z = 0.1 - 0.5 (cm^2 s^{-1})$ \Rightarrow

$$\sigma = 0.4 - 1.6 \text{ (m)}$$

Sundby and Kristiansen (submitted)

Sundby et al. (2001)

Spawning area for Norwegian/Barents seas Greenland halibut

The 3 major types of vertical distributions

Illustration 4: Mucus event in Adriatic, 1983. Giant mucus streamer in 5 m depth. Field of view approx. 8 m2 (Stachowitsch, 1990)

Viscosity as a function of temperature and salinity

Dynamical Viscosity , η

Seuront et al. (2006)

How will a 200 % excess viscosity influence the vertical distribution of pelagic fish eggs?

Case study: Mackerel eggs in the North Sea Wind speed 5 m s⁻¹

 $C(z) = C(a) e^{-(w/K)(z-a)} = 100 e^{-(0.0013/0.0132)z}$ $C(z) = 40 e^{-(0.00043/0.0132)z}$

