ROMS 4D-Var, Observation Impact and Observation Sensitivity

Andy Moore Dept. of Ocean Sciences University of California, Santa Cruz

Reverend Thomas Bayes (1702-1761)

Data Assimilation

Data Assimilation

x_b(0), B_x

The control vector:

$$\mathbf{z} = \begin{pmatrix} \mathbf{x}(0) \\ \mathbf{f} \\ \mathbf{b} \end{pmatrix}$$

Prior error covariance:

Sea Surface Temperature, Jan. 2010

Notation & Nomenclature

The Linear Optimal Estimate

Analysis: $\mathbf{Z}_{a} = \mathbf{Z}_{b} + \mathbf{K}\mathbf{d}$

Gain (dual):

$\mathbf{K} = \mathbf{B}\mathbf{G}^{\mathrm{T}}(\mathbf{G}\mathbf{B}\mathbf{G}^{\mathrm{T}} + \mathbf{R})^{-1}$

Gain (primal):

 $\mathbf{K} = (\mathbf{B}^{-1} + \mathbf{G}^T \mathbf{R}^{-1} \mathbf{G})^{-1} \mathbf{G}^T \mathbf{R}^{-1}$

Regional Ocean Modeling System (ROMS) 4D-Var

- Incremental (linearized about a prior) (Courtier et al, 1994)
- Control vector: initial conditions, surface forcing, boundary conditions.
- Primal & dual formulations (Courtier 1997)
- Primal Incremental 4-Var (I4D-Var)
- Dual Lanczos-augmented RPCG & indirect representer (R4D-Var) (Egbert et al, 1994; Gürol et al, 2014)
- Strong and weak (dual only) constraint
- Preconditioned, Lanczos formulation of conjugate gradient (Lorenc, 2003; Tshimanga et al, 2008; Fisher, 1997)
- 2nd-level preconditioning for multiple outer-loops
- Diffusion operator model for prior covariances (Derber & Bouttier, 1999; Weaver & Courtier, 2001)
- Multivariate balance for prior covariance (Weaver et al, 2005)
- Physical and ecosystem components (Song et al, 2012)

ROMS 4D-Var Diagnostic Tools

- Observation impact (Langland and Baker, 2004; Errico 2007)
- Observation sensitivity adjoint of 4D-Var (Gelaro et al, 2004)
- Singular value decomposition (Barkmeijer et al, 1998; Moore et al., 2004, 2009)
- Expected errors (Moore et al., 2012; Smith et al., 2015)

Representer Matrix

An Ocean Observation

California Current

An Ocean Observation

California Current

ROMS CCS 30 Yr Analysis

1/10° horizontal resolution, 42 levels

Veneziani et al (2009) Broquet et al (2009) Moore et al (2010)

Diagnostic Summary

Observation Impact vs Observation Sensitivity

$$\mathbf{x}_{\mathbf{a}} = \mathbf{x}_{\mathbf{b}} + \tilde{\mathbf{K}}(\mathbf{y} - G(\mathbf{x}_{\mathbf{b}}))$$

posterior=prior + gain×innovation

Observation impact

Scalar $I(\mathbf{x})$ (e.g. transport) function:

Change due to 4D-Var: $\Delta I = I(\mathbf{x}_{a}) - I(\mathbf{x}_{b})$ $\Delta I = I(\mathbf{x}_{b} + \tilde{\mathbf{K}}\mathbf{d}) - I(\mathbf{x}_{b})$ $\simeq \mathbf{d}^{T}\tilde{\mathbf{K}}^{T} (\partial I / \partial \mathbf{x})|_{\mathbf{x}_{b}}$ $= (\mathbf{y} - G(\mathbf{x}_{b}))^{T}\tilde{\mathbf{K}}^{T} (\partial I / \partial \mathbf{x})|_{\mathbf{x}_{b}}$

Change in I can be uniquely attributed to each obs y_{i} .

Observation sensitivity

4D-Var as a function: $\mathbf{x}_{\mathbf{a}} = \mathbf{x}_{\mathbf{b}} + \mathcal{K}(\mathbf{d})$

Scalar $I(\mathbf{x})$ (e.g. transport) function:

Change in *I* due to change δy in *y*: $\delta I \simeq \delta \mathbf{y}^T \left(\partial \mathcal{K} / \partial \mathbf{y} \right) \Big|_{\mathbf{x}_a}^T \left(\partial I / \partial \mathbf{x} \right) \Big|_{\mathbf{x}_a}$

For exact arithmetic and complete convergence:

$$\tilde{\mathbf{K}} = \left(\partial \mathcal{K} \,/\, \partial \mathbf{y}\right)\Big|_{\mathbf{x}_{\mathbf{a}}} = \mathbf{K}$$

<u>Circulation Indices & Target Areas</u> The California Undercurrent

48 0.1 **California Undercurrent 30 Year Analysis** Transport Northern CCS Undercurrent Transport 0.08 46 Mean Posterio 0.06 0.6 Mar/Apr/May Mean Meridional Velocity (m/s) at 36N rent Transport (Sv) 0.04 42 0.02 40 -122 5 -122 4 -122 3 -122 2 -122 1 -122 -121 9 -121 8 -121 7 -121 6 Longitude 0 Year 38 -0.02 Central CCS Undercurrent Transport 36 Fransport (Sv) -0.04 34 -0.06 32 -0.08 2010 1995 Year 30 -0.1 -124 -122 -120 -118 -116 -126 Alongshore v on s-level 16 Analysis Analysis - Background

Jude

Control Vector Impacts

$$\Delta I = (\mathbf{y} - G(\mathbf{x}_{\mathbf{b}}))^T \tilde{\mathbf{K}}^T (\partial I / \partial \mathbf{x}) \Big|_{\mathbf{x}_{\mathbf{b}}}$$
$$= \Delta I_{\mathbf{x}} + \Delta I_{\mathbf{f}} + \Delta I_{\mathbf{b}}$$

Control Vector Monitoring

conditions

Observing Platform Impacts

Observation Impacts

37N transport

37N transport

Information Horizons

For 8 day assimilation cycles:

- Advection: ~70 km (u ~ 0.1 m/s)
- 1st baroclinic mode waves: ~1700 km (c~2.5 m/s)
- Coastal waveguides: ~1700 km
- Barotropic waves whole domain
- SSH pressure gradient gyre scale
- Covariance regularization: ~300 km