

What did we learn about polar lows from the 2008 Andøya campaign?

Jón Egill Kristjánsson

IPY-THORPEX team

Documentation

Where do Polar Lows in the Nordic Seas occur?

Noer et al. (2011: QJRMS)

8 January 2010: A First-Ever Wintertime Polar Low North of Svalbard

Research Questions

- What are the roles of various dynamical and physical factors (surface fluxes, deep convection, upper-level forcing, low-level baroclinicity) in PL developments?
- To what extent can PL predictions be improved by **additional observations**?
- To what extent do current NWP models capture PL structure, and what model resolution is needed to do so?

The Field Campaign

- Field programme: 25 Feb 16 Mar 2008
- Base of operations: Andenes, Norway (69°N, 16°E)
- **DLR Falcon aircraft**: 56 flight hours; 150 dropsondes
- Coast Guard vessels: KV Senja, KV Svalbard
- Unmanned Aerial Vehicles (UAV) at Spitzbergen
- Additional radiosondes at Norwegian and Russian sites
- Drifting buoys
- Unique data set for validation of NWP models

UiO **Department of Geosciences**

University of Oslo

The Andøya Campaign

Kristjánsson et al. (2011: BAMS)

Polar Low Structure

The 3-4 March Polar Low

Baroclinic Development Phase12:21 UTC on 3 March16:01 UTC on 3 March

Kristjánsson et al. (2011: BAMS)

The 3-4 March Polar Low

Mature Convective Phase03:07 UTC on 4 March11:28 UTC on 4 March

Kristjánsson et al. (2011: BAMS)

W-E sections at 11:40 UTC 3 March

Potential Temperature

Horizontal Wind

SW-NE sections at 11:05 UTC 4 March

Relative Humidity

Potential Temperature

Kristjánsson et al. (2011: BAMS)

10:30 – 13:30 UTC 3 March 2008

Føre et al. (2011: QJRMS)

10:30 – 13:30 UTC 4 March 2008

Føre et al. (2011: QJRMS)

UiO **Content of Geosciences**

University of Oslo

Surface Fluxes on 3 March

Latent Heat flux

Sensible Heat flux

Føre et al. (2011: QJRMS)

UiO **Department of Geosciences**

University of Oslo

Surface Fluxes on 4 March

Latent Heat flux

Sensible Heat flux

Føre et al. (2011: QJRMS)

12 UTC 2 Mar

00 UTC 4 Mar

18 UTC 2 Mar

12 UTC 4 Mar

The role of CAPE in Polar Low development

Linders & Saetra (2010: J. Atmos. Sci.)

Van Delden et al. (2003)

Observation Systems

03 March 2008 ETKF Sensitive Area Prediction

Flight 1: 19 sondes in 12Z forecast

Flight 2: 13 sondes in 18Z forecast

From: Emma Irvine

T+24 Forecast of Polar Low Landfall

Polar Low Central Pressure and Track in the 18Z forecast

• Polar low intensity and location are both improved in the 18Z targeted forecast – but, improvement is moderate compared to EPS forecast spread Irvine et al. (2011: QJRMS)

Polar Low 16-17 March 2008: HARMONIE simulations at +24 h

With IASI radiances

Without IASI radiances

Randriamampianina et al. (2011: QJRMS)

Model - LIDAR: Wind

LIDAR: Horizontal Wind Speed [m/s] 15:14 15:44 16:14 16:44 17:14 17:44 46.7 8 -43.3 40.0 36.7 33.3 30.0 Atthude (ko 26.7 23.3 20.0 16.7 13.3 10.0 6.7 3.3 200 400 600 800 1000 1200 1400 1600 2000 1800 0.0 Distance (km)

Wagner et al. (2011: QJRMS)

IR Sat-Image: 03-Mar-2008 17:37 UTC

Model - LIDAR: Vapor

IR Sat-Image: 03-Mar-2008 17:37 UTC

Wagner et al. (2011: QJRMS)

Modeling Aspects

UiO **Content of Geosciences**

University of Oslo

UM simulations

McInnes et al. (2011: QJRMS)

UM12

Wind at 925 hPa: 18 UTC 3 Mar (+42 h)

MSLP+thickness: 18 UTC 3 Mar (+42 h)

UM12_ 70levs

UM4

1 h acc precip (mm) 17-18 UTC 3 Mar (+42 h)

Summary of findings

- Polar Low Structure: Low-level jets in developing stage, eye formation in mature stage
- Systematic precursors identified: SST-T500 threshold, propagating UPV anomaly, low-level baroclinicity
- Predictability of Polar Lows highly variable from case to case not well understood
- Targeted observations can improve the forecasts in some cases – not well understood
- New satellite data (IASI) can improve the forecasts
- LIDAR retrievals can yield useful information on mesoscale features despite cloud limitations
- Sensitivity simulations: Latent heating and surface fluxes crucial; sensible heat flux often larger than latent heat flux

Thank you!

http://ipy-thorpex.no/en/the-research

Photo: Gudmund Dalsbø

Forecast Improvements at met.no

UiO Department of Geosciences

University of Oslo

Sensitivity simulations

	12_03	15_03	18_03	21_03	00_04	03_04	06_04	09_04	12_04	15_04	18_04
CTL	986	987	988	988	988	989	990	991	995	997	1001
Cu	2	2	1	1	1	0	0	1	-1	0	0
NoCH	6	6	5	7	8	9	9	11	10		
NoCH-D36		1	0	1	2	2	2	4	2	4	
NoCH-D48						0	1	3	2	2	2
NoF	No PL										
NoF+NoCH	No PL										
NoF-D36		0	1	3	5	6	8	11	12	No PL	
NoF-D48						0	1	5	5	7	No PL
NoSHF	2	2	2	3	3	4	5	6	6	8	
NoSHF-D48						0	1	3	2		
NoLHF	3	4	4	4	5	7	9	No PL			
NoLHF-D48						0	0	3	2		

Føre and Nordeng (2012: QJRMS, in press)

Forecast errors as a function of latitude

	-	-	-		
Station	LAT	Mean	STD	RMSE	
		error			
Ny Ålesund	78.9	0.6	1.3	1.5	
Bjørnøya	74.5	0.5	1.4	1.5	
Heidrun	65.3	0.2	1.2	1.2	
Ekofisk	56.5	0.0	1.1	1.1	

Error statistics for MSLP for selected SYNOP stations in the North Sea, Norwegian Sea and the Barents Sea in units of hPa.

The table shows a composite of all forecast lengths from +18 to + 42 hours with the Norwegian operational limited area model HIRLAM between 1 Jan 2010 and 30 Sept 2010.

From: Thor Erik Nordeng

Figure 16: Position of polar low from UM12 (light blue), UM12_70L (black), UM4 (red), UM1 (gray) UM4_Lat10 (green) and analysis (dark blue). For the analyses the position is shown between 3 March 18 UTC and 4 March 18 UTC at 6 hours intervals, except for 4 March 000 UTC. For the model runs the positions are shown between 3 March 18 UTC and 4 March 12 UTC with exceptions for UM4_Lat10, where we have not shown the position for 3 March 18 UTC and UM1, where we only have shown the positions for 3 March 18 UTC and UM1, where we only have shown the positions for 3 March 18 UTC and 4 March 00 UTC.

McInnes et al. (2011: QJRMS)

Probabilistic Forecasting (LAMEPS)

Sea-Level Pressure

Precipitation

Kristjánsson et al. (2011: BAMS)

Ivan Føre (2012: Ph.D. thesis)

DLAAARET

Jakten på polarstormen

www.ipy-thorpex.no

Polar Lows in the Future

Blue: Fewer polar lows than now Red: More numerous polar lows than now Note increase in the Barents Sea

Kolstad & Bracegirdle (2007: Clim. Dyn.)

OLPARET

Jakten på polarstormen

www.ipy-thorpex.no

Where do we find polar lows today?

Kolstad & Bracegirdle (2007: Clim. Dyn.)

Contributions from different PV anomalies

Føre et al. (2011: QJRMS)

Model - LIDAR: Vapor

IR Sat-Image: 03-Mar-2008 17:37 UTC

Wagner et al. (2011: QJRMS)

High SSTs in the area of interest

Føre et al. (2011: QJRMS)

Sensitivity of forecast error north of 70N to initial conditions

Jung & Leutbecher (2007: QJRMS)