# Why was the March 16-17 2008 Polar low poorly predicted?

Bjørg Jenny Kokkvoll Engdahl, UiO Jón Egill Kristjánsson, UiO Thomas Spengler, UiB

NOAA-16 (SAF\_NE)day\_night 1508 UTC March 16 2008

## The March 16-17 polar low

- Occurred at the end of the IPY-THORPEX Andøya field campaign.
- Developed rapidly during the night of March 15-16.
- Poorly forecasted by the operational models.
- Made landfall at the coast of Trøndelag (63.5N, 10E), around 1200 UTC on March 17.



From Kristjánsson et al. (2011): BAMS

# Methodology

- Analyse the weather conditions prior to and during cyclogenesis
- Discuss possible trigger, propagation and forcing mechanisms

 Use the Weather Research and Forecasting (WRF) model to simulate the low: Perform several sensitivity experiments considering the importance of initial times, resolution and different parametrization options for physics, as well as the role of latent heating and contribution from surface fluxes.

# **NOAA IR-satellite images**



1112 UTC March 15

0115 UTC March 16

#### 0608 UTC March 16

# **NOAA IR-satellite images**



1110 UTC March 16

0104 UTC March 17 0544 UTC March 17

### Scatterometerdata



NOAA/NESDIS/Office of Research and Applications

QuickScat SeaWinds data from March 15 (left) and 16 (right)

## **Dropsondes from March 15**



 Positions of the dropsondes. NOAA 4 IR-satellite image from 1113 UTC March 15.

# **Dropsondes from March 15**





#### Potential temperature

#### Equivalent potential temperature

# **Dropsondes from March 15**



**Relative humidity RH** 



#### Horizontal wind

## ECMWF-analysis: 950-500hPa thickness (red) and surface pressure (blue)



1800 UTC March 15 0600 UTC March 16

1200 UTC March 16

### ECMWF-analyses: Upper-level PV (400hPa)



Potential Vorticity (PVU) at 400 hPa



Potential Vorticity (PVU) at 400 hPa



1200 UTC March 16

#### 1800 UTC March 15

0600 UTC March 16

## Low-level pot. temperature (950hPa)



1800 UTC March 15 0600 UTC March 16 1200 UTC March 16

## Absolute Vorticity at 925 hPa





0 5 10 15 20 25 30 35 40 45 50 55 60 65 70



1200 UTC March 16

1800 UTC March 15

0600 UTC March 16

# Simulations

| Configuration | Initialisation    | Grid spacing d01, d02 | Comments          |
|---------------|-------------------|-----------------------|-------------------|
| 1300          | 0000 UTC March 13 | 30km, 10km            |                   |
| 1412          | 1200 UTC March 14 | 30km, 10km            |                   |
| 1500          | 0000 UTC March 15 | 30km, 10km            |                   |
| 1506          | 0600 UTC March 15 | 30km, 10km            |                   |
| 1512          | 1200 UTC March 15 | 30km, 10km            |                   |
| 1518          | 1800 UTC March 15 | 30km, 10km            |                   |
| 1600          | 0000 UTC March 16 | 30km, 10km            |                   |
| 1612          | 1200 UTC March 16 | 30km, 10km            |                   |
| 1700          | 0000 UTC March 17 | 30km, 10km            |                   |
| 1500HR        | 0000 UTC March 15 | 9km, 3km              |                   |
| 1600HR        | 0000 UTC March 16 | 9km, 3km              |                   |
| 15MP          | 0000 UTC March 15 | 30km, 10km            | WSM6 MP           |
| 15CU          | 0000 UTC March 15 | 30km, 10km            | Kain-Fritsch CU   |
| 15PBL         | 0000 UTC March 15 | 30km, 10km            | MYNN PBL          |
| 15LH          | 0000 UTC March 15 | 30km, 10km            | In-cloud LH, off  |
| 15SF          | 0000 UTC March 15 | 30km, 10km            | Surface flux, off |

### Different initial times: Long lead-times: SLP and Wind speed



6





Simulations at 1200 UTC March 16: +48h, +36h and +30h

### Different initial times: Short lead-times: SLP and Wind speed



8

6

10 12 14 16 18 20 22 24 25





Simulations at 1200 UTC March 16: +24h, +18h and + 12h

### Different initial times: Long lead-times: UPV







Simulations at 1200 UTC March 16: +48h, +36h and +30h

### Different initial times: Short lead-times: UPV



Simulations at 1200 UTC March 16: +24h, +18h and + 12h

### Different initial times: Long lead-times: lowlevel pot.temp



Simulations at 1200 UTC March 16: +48h, +36h and + 30h

### Different initial times: Short lead-times: Lowlevel pot.temp



Simulations at 1200 UTC March 16: +24h, +18h and + 12h

## High resolution simulations





10 12 14 16 18 20 22 24 25

Simulations at 1200 UTC March 16: +36h and +12h

# **Different physical parametrizations**

LH from microphysics

Control run





Surface fluxes turned off



Simulations (+36) at 1200 UTC March 16: Control, LH and SF

# Conclusions

- Polar low development involved multiple vortices alligned along a low-level absolute vorticity streak
- Convection alligned with high low-level temperatures
- Energy propagation along upper-level PV-gradient?
- Simulations starting after 06 UTC 15 March systematically better than those with longer lead time:
  - => Due to dropsondes on 15 March?
- The WRF simulations showed that:
  - Initial conditions, in-cloud latent heating and contribution from surface fluxes are crucial
  - Higher resolution did not improve the results